Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.636
Filtrar
1.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592583

RESUMO

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Pulmonares , Camundongos Knockout , Receptor trkB , Receptores Tipo II do Fator de Necrose Tumoral , Esquizofrenia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
2.
Transl Psychiatry ; 14(1): 163, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531835

RESUMO

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Esquizofrenia/metabolismo , Metabolômica , Metaboloma
3.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513663

RESUMO

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/ultraestrutura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmissão Sináptica , Imidazóis/química , Sarcosina/análogos & derivados , Piperidinas/química
4.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540331

RESUMO

Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.


Assuntos
Histonas , Esquizofrenia , Humanos , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Esquizofrenia/metabolismo , Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Metilação
5.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
6.
J Chromatogr A ; 1720: 464784, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442497

RESUMO

Schizophrenia is a serious mental illness with unknown etiology, and shows increasing incidence and high lifetime prevalence rate. The main receptors related to the disease are DRD2 and 5-HTR2A. Thus, a comprehensive understanding of the interaction mode between antipsychotic drugs with relevant receptors is very important for developing more effective drugs. 5-HTR2A-SNAP-Tag/CMC and DRD2-SNAP-Tag/CMC models constructed in this work provided a new method for studying the interaction between atypical antipsychotics and the two receptors. The results of comparative experiments showed that the new models not only met the high selectivity and specificity of the screening requirements but were also more stable and long-lasting than the traditional CMC model. Binding assays showed that the effects of three atypical antipsychotics (including clozapine, olanzapine, and quetiapine) on 5-HTR2A were stronger than their effects on DRD2. Additionally, two potentially active components, magnolol and honokiol, were screened in Magnolia officinalis methanol extract using the 5-HTR2A-SNAP-Tag/CMCHPLC-MS system. Nonlinear chromatographic analysis and molecular docking were conducted to study the interactions between screened compounds and the two receptors. The binding constants (KA) of magnolol and honokiol with 5-HTR2A were 17,854 ± 1,117 M-1 and 38,858 ± 4,964 M-1, respectively, and KA values with DRD2 were 4,872 ± 1,618 M-1 and 20,692 ± 10,267 M-1, respectively. We concluded that the established models are reliable for studying receptor-ligand interactions and screening antagonists of schizophrenia.


Assuntos
Compostos Alílicos , Antipsicóticos , Compostos de Bifenilo , Lignanas , Magnolia , Fenóis , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/química , Magnolia/química , Ligantes , Simulação de Acoplamento Molecular , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
7.
EBioMedicine ; 102: 105045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471394

RESUMO

BACKGROUND: Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS: We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS: Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION: Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING: This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.


Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Camundongos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
8.
Psychiatry Clin Neurosci ; 78(4): 237-247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334156

RESUMO

AIM: Schizophrenia (SZ) is a severe psychiatric disorder caused by the interaction of genetic and environmental factors. Although somatic mutations that occur in the brain after fertilization may play an important role in the cause of SZ, their frequencies and patterns in the brains of patients and related animal models have not been well studied. This study aimed to find somatic mutations related to the pathophysiology of SZ. METHODS: We performed whole-exome sequencing (WES) of neuronal and nonneuronal nuclei isolated from the postmortem prefrontal cortex of patients with SZ (n = 10) and controls (n = 10). After detecting somatic mutations, we explored the similarities and differences in shared common mutations between two cell types and cell type-specific mutations. We also performed WES of prefrontal cortex samples from an animal model of SZ based on maternal immune activation (MIA) and explored the possible impact of MIA on the patterns of somatic mutations. RESULTS: We did not find quantitative differences in somatic mutations but found higher variant allele fractions of neuron-specific mutations in patients with SZ. In the mouse model, we found a larger variation in the number of somatic mutations in the offspring of MIA mice, with the occurrence of somatic mutations in neurodevelopment-related genes. CONCLUSION: Somatic mutations occurring at an earlier stage of brain cell differentiation toward neurons may be important for the cause of SZ. MIA may affect somatic mutation profiles in the brain.


Assuntos
Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Neurônios/metabolismo , Mutação
9.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396971

RESUMO

Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Espectrometria de Massas em Tandem , Hidrocortisona , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Biomarcadores/metabolismo , Metabolômica/métodos , Medidas de Resultados Relatados pelo Paciente , Ácido Láctico
10.
Eur Neuropsychopharmacol ; 80: 47-54, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310750

RESUMO

Clozapine is the only licensed medication for treatment-resistant schizophrenia (TRS). Few predictors for variation in response to clozapine have been identified, but clozapine metabolism is known to influence therapeutic response and adverse side effects. Here, we expand on genome-wide studies of clozapine metabolism, previously focused on common genetic variation, by analysing whole-exome sequencing data from 2062 individuals with schizophrenia taking clozapine in the UK. We investigated whether rare genomic variation in genes and gene sets involved in the clozapine metabolism pathway influences plasma concentrations of clozapine metabolites, assessed through the longitudinal analysis of 6585 pharmacokinetic assays. We observed a statistically significant association between the burden of rare damaging coding variants (MAF ≤ 1 %) in gene sets broadly related to drug pharmacokinetics and lower clozapine (ß = -0.054, SE = 0.019, P-value = 0.005) concentrations in plasma. We estimate that the effects in clozapine plasma concentrations of a single damaging allele in this gene set are akin to reducing the clozapine dose by about 35 mg/day. The gene-based analysis identified rare variants in CYP1A2, which encodes the enzyme responsible for converting clozapine to norclozapine, as having the strongest effects of any gene on clozapine metabolism (ß = 0.324, SE = 0.124, P = 0.009). Our findings support the hypothesis that rare genetic variants in known drug-metabolising enzymes and transporters can markedly influence clozapine plasma concentrations; these results suggest that pharmacogenomic efforts trying to predict clozapine metabolism and personalise drug therapy could benefit from the inclusion of rare damaging variants in pharmacogenes beyond those already identified and catalogued as PGx star alleles.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efeitos adversos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Antipsicóticos/efeitos adversos , Farmacogenética , Alelos
11.
J Neurosci Res ; 102(2): e25297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361412

RESUMO

Genetic risk for schizophrenia is thought to trigger variation in clinical features of schizophrenia, but biological processes associated with neuronal activity in brain regions remain elusive. In this study, gene expression features were mapped to various sub-regions of the brain by integrating low-frequency amplitude features and gene expression data from the schizophrenia brain and using gene co-expression network analysis of the Allen Transcriptome Atlas of the human brain from six donors to identify genetic features of brain regions and important associations with neuronal features. The results indicate that changes in the dynamic amplitude of low-frequency fluctuation (dALFF) are mainly associated with transcriptome signature factors such as cortical layer synthesis, immune response, and expanded membrane transport. Further modular disease enrichment analysis revealed that the same set of signature genes associated with dALFF levels was enriched for multiple neurological biological processes. Finally, genetic profiling of individual modules identified multiple core genes closely related to schizophrenia, also potentially associated with neuronal activity. Thus, this paper explores genetic features of brain regions in the schizophrenia closely related to low-frequency amplitude ratio levels based on imaging genetics, which suggests structural endophenotypes associated with schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Neurônios/metabolismo , Imageamento por Ressonância Magnética
12.
Neuropsychopharmacology ; 49(6): 983-992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321095

RESUMO

Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.


Assuntos
Antipsicóticos , Reposicionamento de Medicamentos , Redes Reguladoras de Genes , Esquizofrenia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Reposicionamento de Medicamentos/métodos , Humanos , Redes Reguladoras de Genes/efeitos dos fármacos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Transl Psychiatry ; 14(1): 113, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396013

RESUMO

Antipsychotic-induced low availability of group II metabotropic glutamate receptors (including mGlu2R and mGlu3R) in brains of schizophrenia patients may explain the limited efficacy of mGlu2/3R ligands in clinical trials. Studies evaluating mGlu2/3R levels in well-designed, large postmortem brain cohorts are needed to address this issue. Postmortem samples from the dorsolateral prefrontal cortex of 96 schizophrenia subjects and matched controls were collected. Toxicological analyses identified cases who were (AP+) or were not (AP-) receiving antipsychotic treatment near the time of death. Protein and mRNA levels of mGlu2R and mGlu3R, as well as GRM2 and GRM3 promoter-attached histone posttranslational modifications, were quantified. Experimental animal models were used to compare with data obtained in human tissues. Compared to matched controls, schizophrenia cortical samples had lower mGlu2R protein amounts, regardless of antipsychotic medication. Downregulation of mGlu3R was observed in AP- schizophrenia subjects only. Greater predicted occupancy values of dopamine D2 and serotonin 5HT2A receptors correlated with higher density of mGlu3R, but not mGlu2R. Clozapine treatment and maternal immune activation in rodents mimicked the mGlu2R, but not mGlu3R regulation observed in schizophrenia brains. mGlu2R and mGlu3R mRNA levels, and the epigenetic control mechanisms did not parallel the alterations at the protein level, and in some groups correlated inversely. Insufficient cortical availability of mGlu2R and mGlu3R may be associated with schizophrenia. Antipsychotic treatment may normalize mGlu3R, but not mGlu2R protein levels. A model in which epigenetic feedback mechanisms controlling mGlu3R expression are activated to counterbalance mGluR loss of function is described.


Assuntos
Antipsicóticos , Receptores de Glutamato Metabotrópico , Esquizofrenia , Animais , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Receptores de Glutamato Metabotrópico/genética , Encéfalo/metabolismo , Epigênese Genética , RNA Mensageiro/metabolismo
14.
Transl Psychiatry ; 14(1): 79, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320995

RESUMO

The brain neurotramsmitter dopamine may play an important role in modulating systemic glucose homeostasis. In seven hundred and four drug- naïve patients with first-episode schizophrenia, we provide robust evidence of positive associations between negative symptoms of schizophrenia and high fasting blood glucose. We then show that glucose metabolism and negative symptoms are improved when intermittent theta burst stimulation (iTBS) on prefrontal cortex (PFC) is performed in patients with predominantly negative symptoms of schizophrenia. These findings led us to hypothesize that the prefrontal cortical dopamine deficit, which is known to be associated with negative symptoms, may be responsible for abnormal glucose metabolism in schizophrenia. To explore this, we optogenetically and chemogenetically inhibited the ventral tegmental area (VTA)-medial prefrontal cortex (mPFC) dopamine projection in mice and found both procedures caused glucose intolerance. Moreover, microinjection of dopamine two receptor (D2R) neuron antagonists into mPFC in mice significantly impaired glucose tolerance. Finally, a transgenic mouse model of psychosis named Disc1tr exhibited depressive-like symptoms, impaired glucose homeostasis, and compared to wild type littermates reduced D2R expression in prefrontal cortex.


Assuntos
Dopamina , Esquizofrenia , Camundongos , Humanos , Animais , Dopamina/metabolismo , Esquizofrenia/metabolismo , Área Tegmentar Ventral/metabolismo , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Glucose/metabolismo , Proteínas do Tecido Nervoso/metabolismo
15.
J Psychiatry Neurosci ; 49(1): E35-E44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302137

RESUMO

BACKGROUND: Susceptibility to schizophrenia is determined by interactions between genes and environment, possibly via epigenetic mechanisms. Schizophrenia has been associated with a restrictive epigenome, and histone deacetylase (HDAC) inhibitors have been postulated as coadjuvant agents to potentiate the efficacy of current antipsychotic drugs. We aimed to evaluate global histone posttranslational modifications (HPTMs) and HDAC expression and activity in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. METHODS: We used postmortem DLPFC samples of individuals with schizophrenia and controls matched for sex, age, and postmortem interval. Schizophrenia samples were classified into antipsychotic-treated or antipsychotic-free subgroups according to blood toxicology. Expression of HPTMs and HDAC was quantified by Western blot. HDAC activity was measured with a fluorometric assay. RESULTS: H3K9ac, H3K27ac, and H3K4me3 were globally enhanced in the DLPFC of individuals with schizophrenia (+24%-42%, p < 0.05). HDAC activity (-17%, p < 0.01) and HDAC4 protein expression (-20%, p < 0.05) were downregulated in individuals with schizophrenia. Analyses of antipsychotic-free and antipsychotic-treated subgroups revealed enhanced H3K4me3 and H3K27ac (+24%-49%, p < 0.05) and reduced HDAC activity in the antipsychotic-treated, but not in the antipsychotic-free subgroup. LIMITATIONS: Special care was taken to control the effect of confounding factors: age, sex, postmortem interval, and storage time. However, replication studies in bigger cohorts might strengthen the association between permissive HPTMs and schizophrenia. CONCLUSION: We found global HPTM alterations consistent with an aberrantly permissive epigenome in schizophrenia. Further studies to elucidate the significance of enhanced permissive HPTMs in schizophrenia and its association with the mechanism of action of antipsychotic drugs are encouraged.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Córtex Pré-Frontal Dorsolateral , Histonas , Epigênese Genética , Córtex Pré-Frontal/metabolismo
16.
Transl Psychiatry ; 14(1): 112, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395959

RESUMO

DDR1 has been linked to schizophrenia (SCZ) and bipolar disorder (BD) in association studies. DDR1 encodes 58 distinct transcripts, which can be translated into five isoforms (DDR1a-e) and are expressed in the brain. However, the transcripts expressed in each brain cell type, their functions and their involvement in SCZ and BD remain unknown. Here, to infer the processes in which DDR1 transcripts are involved, we used transcriptomic data from the human brain dorsolateral prefrontal cortex of healthy controls (N = 936) and performed weighted gene coexpression network analysis followed by enrichment analyses. Then, to explore the involvement of DDR1 transcripts in SCZ (N = 563) and BD (N = 222), we studied the association of coexpression modules with disease and performed differential expression and transcript significance analyses. Some DDR1 transcripts were distributed across five coexpression modules identified in healthy controls (MHC). MHC1 and MHC2 were enriched in the cell cycle and proliferation of astrocytes and OPCs; MHC3 and MHC4 were enriched in oligodendrocyte differentiation and myelination; and MHC5 was enriched in neurons and synaptic transmission. Most of the DDR1 transcripts associated with SCZ and BD pertained to MHC1 and MHC2. Altogether, our results suggest that DDR1 expression might be altered in SCZ and BD via the proliferation of astrocytes and OPCs, suggesting that these processes are relevant in psychiatric disorders.


Assuntos
Transtorno Bipolar , Receptor com Domínio Discoidina 1 , Esquizofrenia , Adulto , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Perfilação da Expressão Gênica , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma
17.
Eur J Neurosci ; 59(8): 2102-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279611

RESUMO

The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
18.
Pathol Res Pract ; 254: 155102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211386

RESUMO

microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.


Assuntos
MicroRNAs , Esquizofrenia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Biomarcadores , Encéfalo/metabolismo , Transdução de Sinais
19.
Artigo em Inglês | MEDLINE | ID: mdl-38296154

RESUMO

Current treatment for schizophrenia (SZ) ameliorates the positive symptoms, but is inefficient in treating the negative and cognitive symptoms. The SZ glutamatergic dysfunction hypothesis has opened new avenues in the development of novel drugs targeting the glutamate storm, an inducer of progressive neuropathological changes. Positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), reduce the presynaptic release of glutamate, which has previously been demonstrated to attenuate glutamate- and dopamine-induced apoptosis in human neuroblastoma cell cultures. We hypothesised that JNJ treatment would modify the brain levels of apoptotic proteins in a mouse model of ketamine (KET)-induced schizophrenia. We analysed the levels of proapoptotic (caspase-3 and Bax) and antiapoptotic (Bcl-2) proteins by western blot in the prefrontal cortex and hippocampus of JNJ-treated mice. JNJ attenuated apoptosis in the brain by partially restoring the levels of the antiapoptotic Bcl-2 protein, which is significantly reduced in animals exposed to KET. Additionally, a significant inverse correlation was observed between proapoptotic protein levels and behavioural deficits in the mice. Our findings suggest that JNJ may attenuate brain apoptosis in vivo, as previously described in cell cultures, providing a link between neuropathological deficits and SZ symptomatology.


Assuntos
Ketamina , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Ketamina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Glutamatos/metabolismo
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279249

RESUMO

Schizophrenia (SCZ) is an articulated psychiatric syndrome characterized by a combination of genetic, epigenetic, and environmental factors. Our intention is to present a pathogenetic model combining SCZ alterations and the main cellular actors of the blood-brain barrier (BBB): endothelial cells (ECs), pericytes, and astrocytes. The homeostasis of the BBB is preserved by the neurovascular unit which is constituted by ECs, astrocytes and microglia, neurons, and the extracellular matrix. The role of the BBB is strictly linked to its ability to preserve the biochemical integrity of brain parenchyma integrity. In SCZ, there is an increased BBB permeability, demonstrated by elevated levels of albumin and immunoglobulins in the cerebrospinal fluid, and this is the result of an intrinsic endothelial impairment. Increased BBB permeability would lead to enhanced concentrations of neurotoxic and neuroactive molecules in the brain. The pathogenetic involvement of astrocytes in SCZ reverberates its consequences on BBB, together with the impact on its permeability and selectivity represented by the EC and pericyte damage occurring in the psychotic picture. Understanding the strict interaction between ECs and astrocytes, and its consequent impact on cognition, is diriment not only for comprehension of neurotransmitter dyshomeostasis in SCZ, but also for focusing on other potential therapeutic targets.


Assuntos
Barreira Hematoencefálica , Esquizofrenia , Humanos , Barreira Hematoencefálica/metabolismo , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Pericitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...